Abstract:On November 18, 2017, a MS6.9 earthquake struck Mainling County, Tibet, with a depth of 10km. The earthquake occurred at the eastern Himalaya syntaxis. The Namche Barwan moved northward relative to the Himalayan terrane and was subducted deeply beneath the Lhasa terrane, forming the eastern syntaxis after the collision of the Indian plate and Asian plates. Firstly, this paper uses the far and near field broadband seismic waveform for joint inversion (CAPJoint method)of the earthquake focal mechanism. Two groups of nodal planes are obtained after 1000 times Bootstrap test. The strike, dip and rake of the best solution are calculated to be 302°, 76° and 84° (the nodal plane Ⅰ)and 138°, 27° and 104° (the nodal plane Ⅱ), respectively. This event was captured by interferometric synthetic aperture radar (InSAR)measurements from the Sentinel-1A radar satellite, which provide the opportunity to determine the fault plane, as well as the co-seismic slip distribution, and assess the seismic hazards. The overall trend of the deformation field revealed by InSAR is consistent with the GPS displacement field released by the Gan Wei-Jun's team. Geodesy (InSAR and GPS)observation of the earthquake deformation field shows the northeastern side of the epicenter uplifting and the southwestern side sinking. According to geodetic measurements and the thrust characteristics of fault deformation field, we speculate that the nodal plane Ⅰ is the true rupture plane. Secondly, based on the focal mechanism, we use InSAR data as the constraint to invert for the fine slip distribution on the fault plane. Our best model suggests that the seismogenic fault is a NW-SE striking thrust fault with a high angle. Combined with the slip distribution and aftershocks, we suggest that the earthquake is a high-angle thrust event, which is caused by the NE-dipping thrust beneath the Namche Barwa syntaxis subducted deeply beneath the Lhasa terrane.
刘云华, 单新建, 张迎峰, 赵德政, 屈春燕. 基于地震波及InSAR数据的2017年11月18日西藏米林MS6.9地震发震构造[J]. 地震地质, 2018, 40(6): 1254-1275.
LIU Yun-hua, SHAN Xin-jian, ZHANG Ying-feng, ZHAO De-zheng, QU Chun-yan. USE OF SEISMIC WAVEFORMS AND INSAR DATA FOR DETERMINATION OF THE SEISMOTECTONICS OF THE MAINLING MS6.9 EARTHQUAKE ON NOV.18, 2017. SEISMOLOGY AND GEOLOGY, 2018, 40(6): 1254-1275.
Nitti D O, Hanssen R F, Refice A, et al. 2008. Evaluation of DEM-assisted SAR coregistration[J]. Proceedings of SPIE, 7109, 710919.
Clarke P J, Paradissis D, Briole P, et al. 1997. Geodetic investigation of the 13 May 1995 Kozani-Grevena(Greece)earthquake[J]. Geophysical Research Letters, 24:707-710.
Wang P, Scherler D, Liu-Zeng J, et al. 2014. Tectonic control of Yarlung Tsangpo Gorge revealed by a buried canyon in Southern Tibet[J]. Science, 346(6212):978-981.
Efron B. 1979. Bootstrap methods:Another look at the jackknife[J]. Annals of Statistics, 7(1):1-26.
Zhang P Z, Shen Z K, Wang M, et al. 2004. Continuous deformation of the Tibetan plateau from global positioning system data[J]. Geology, 32(9):809-812.
Zhao L S, Helmberger D V. 1994. Source estimation from broadband regional seismograms[J]. Bulletin of the Seismological Society of America, 84(1):91-104.
Bai D H, Unsworth M J, Meju M A, et al. 2010. Crustal deformation of the eastern Tibetan plateau revealed by magnetotelluric imaging[J]. Nature Geoscience, 3(5):358-362.
Sibson R H, Robert F, Poulsen K H. 1988. High-angle reverse faults, fluid-pressure cycling, and mesothermal gold-quartz deposit[J]. Geology, 16(6):551-555.
Massonnet D, Rossi M, Carmona C, et al. 1993. The displacement field of the Landers earthquake mapped by radar interferometry[J]. Nature, 364(6433):138-142.
白玲, 李国辉, 宋博文. 2017. 2017年西藏米林6.9级地震震源参数及其构造意义[J]. 地球物理学报, 60(12):4956-4963. BAI Ling, LI Guo-hui, SONG Bo-wen. 2017. The source parameters of the M6.9 Mainling, Tibet earthquake and its tectonic implications[J]. Chinese Journal of Geophysics, 60(12):4956-4963(in Chinese).
丁林, 钟大赉. 2013. 印度与欧亚板块碰撞以来东喜马拉雅构造结的演化[J]. 地质科学, 48(2):317-333. DING Lin, ZHONG Da-lai. 2013. The tectonic evolution of the eastern Himalaya syntaxis since the collision of the Indian and Eurasian plates[J]. Chinese Journal of Geology, 48(2):317-333(in Chinese).
李晓峰, 王萍, 王慧颖, 等. 2018. 雅鲁藏布江大拐弯地区河流地貌参数揭示的地质构造意义[J]. 第四纪研究, 38(1):183-192. LI Xiao-feng, WANG Ping, WANG Hui-ying, et al. 2018. Differential tectonic uplift indicated by river geomorphic parameters at the Tsangpo River Gorge[J]. Quaternary Sciences, 38(1):183-192(in Chinese).
宋键, 唐方头, 邓志辉, 等. 2011. 喜马拉雅东构造结周边地区主要断裂现今运动特征与数值模拟研究[J]. 地球物理学报, 54(6):1536-1548. SONG Jian, TANG Fang-tou, DENG Zhi-hui, et al. 2011. Study on current movement characteristics and numerical simulation of the main faults around Eastern Himalayan Syntaxis[J]. Chinese Journal of Geophysics, 54(6):1536-1548(in Chinese).
肖鹏飞, 白登海, Ivan M V, 等. 2010. 长周期大地电磁测深研究:青藏高原东部LMT响应函数及应用[J]. 地震地质, 32(1):38-50. doi:10.3969/j.issn.0253-4967.2010.01.004. XIAO Peng-fei, BAI Deng-hai, Ivan M V, et al. 2010. Study on long-period magnetotelluric sounding:The LMT transfer function in eastern Tibetan plateau[J]. Seismology and Geology, 32(1):38-50(in Chinese).
曾祥方, 罗艳, 韩立波, 等. 2013. 2013年4月20日四川芦山MS7.0地震:一个高角度逆冲地震[J]. 地球物理学报, 56(4):1418-1424. ZENG Xiang-fang, LUO Yan, HAN Li-bo, et al. 2013. The Lushan MS7.0 earthquake on 20 April 2013:A high-angle thrust event[J]. Chinese Journal of Geophysics, 56(4):1418-1424(in Chinese).
张新钰, 季建清, 韩宝福, 等. 2006. 地表剥蚀、下地壳流变与造山作用研究进展[J]. 地球科学进展, 21(5):521-531. ZHANG Xin-yu, JI Jian-qing, HAN Bao-fu, et al. 2006. Research advances in erosion, rheology of the lower crust and orogeny[J]. Advances in Earth Science, 21(5):521-531(in Chinese).
周永胜, 何昌荣. 2009. 汶川地震区的流变结构与发震高角度逆断层滑动的力学条件[J]. 地球物理学报, 52(2):474-484. ZHOU Yong-shen, HE Chang-rong. 2009. The rheological structures of crust and mechanics of high-angle reverse fault slip for Wenchuan MS8.0 earthquake[J]. Chinese Journal of Geophysics, 52(2):474-484(in Chinese).
陈伟文, 倪四道, 汪贞杰, 等. 2012. 2010年高雄地震震源参数的近远震波形联合反演[J]. 地球物理学报, 55(7):2319-2328. CHEN Wei-wen, NI Si-dao, WANG Zhen-jie, et al. 2012. Joint inversion with both local and teleseismic waveforms for source parameters of the 2010 Kaohsiung earthquake[J]. Chinese Journal of Geophysics, 55(7):2319-2328(in Chinese).
丁林, 钟大赉. 1999. 西藏南迦巴瓦峰地区高压麻粒岩相变质作用特征及其构造地质意义[J]. 中国科学(D辑), 29(5):385-397. DING Lin, ZHONG Da-lai. 1999. The characteristics of high pressure granulite facies metamorphism and its tectonic geological significance in the south of Tibet[J]. Science in China(Ser D), 29(5):385-397(in Chinese).
董汉文, 许志琴, 李源, 等. 2014. 东喜马拉雅构造结墨脱剪切带特征及其区域构造意义[J]. 岩石学报, 30(8):2229-2240. DONG Han-wen, XU Zhi-qin, LI Yuan, et al. 2014. Characteristics of the Medog shear zone in the Eastern Himalayan Syntaxis and its tectonic significance[J]. Acta Petrologica Sinica, 30(8):2229-2240(in Chinese).
李保昆, 刁桂苓, 徐锡伟, 等. 2015. 1950年西藏察隅M8.6强震序列震源参数复核[J]. 地球物理学报, 58(11):4254-4265. LI Bao-kun, DIAO Gui-ling, XU Xi-wei, et al. 2015. Redetermination of the source parameters of the Zayü, Tibet M8.6 earthquake sequence in 1950[J]. Chinese Journal of Geophysics, 58(11):4254-4265(in Chinese).
梁诗明. 2014. 基于GPS观测的青藏高原现今三维地壳运动研究[D]. 北京:中国地震局地质研究所. LIANG Shi-ming. 2014. Three-dimensional velocity field of present-day crustal motion of the Tibetan plateau inferred from GPS measurements[D]. Institute of Geology, Chinese Earthquake Administration, Beijing(in Chinese).
彭淼, 姜枚, Chen Y, 等. 2017. 利用远震接收函数揭示的喜马拉雅东构造结台阵下方地壳结构及其动力学意义[J]. 地球物理学报, 60(1):70-85. PENG Miao, JIANG Mei, CHEN You-lin, et al. 2017. Crustal structure under the eastern Himalayan syntaxis seismic array and its geodynamic implications derived from receiver functions[J]. Chinese Journal of Geophysics, 60(1):70-85(in Chinese).
张进江, 钟大赉, 何顺东. 2003. 东喜马拉雅南迦巴瓦构造结的构造格局及形成过程探讨[J]. 中国科学(D辑), 33(4):373-383. ZHANG Jin-jiang, ZHONG Da-lai, HE Shun-dong. 2003. The tectonic pattern and formation process of Namche Barwa syntaxis in east Himalaya[J]. Science in China(Ser D), 33(4):373-383(in Chinese).
张培震, 闻学泽, 徐锡伟, 等. 2009. 2008年汶川8.0级特大地震孕育和发生的多单元组合模式[J]. 科学通报, 54(7):944-953. ZHANG Pei-zhen, WEN Xue-ze, XU Xi-wei, et al. 2009. Tectonic model of the great Wenchuan earthquake of May 12, 2008, Sichuan, China[J]. Chinese Science Bulletin, 54(7):944-953(in Chinese).
Chen W W, Ni S D, Kanamori H, et al. 2015. CAPjoint, a computer software package for joint inversion of moderate earthquake source parameters with local and teleseismic waveforms[J]. Seismological Research Letters, 86:432-441.
Okada Y. 1985. Surface deformation due to shear and tensile faults in a half-space[J]. Bulletin of the Seismological Society of America, 75(2):1018-1040.
Werner C, Wegmller U, Strozzi T, et al. 2000. GAMMA SAR and interferometric processing software[C]. ERS-ENVISAT Symposium, Gothenburg, Sweden.
丁林, 潘裕生, 王庆隆. 1995. 东喜马拉雅构造结上新世以来快速抬升的裂变径迹证据[J]. 科学通报, 40(16):1497-1500. DING Lin, PAN Yu-sheng, WANG Qing-long. 1995. Fission track evidence of rapid uplift in the eastern Himalayan structure[J]. Chinese Science Bulletin, 40(16):1497-1500(in Chinese).
Ding L, Zhong D L, Yin A, et al. 2001. Cenozoic structural and metamorphic evolution of the eastern Himalayan syntaxis(Namche Barwa)[J]. Earth and Planetary Science Letters, 192:423-438.
Jónsson S, Zebker H, Segall P, et al. 2002. Fault slip distribution of the 1999 Hector Mine, California, earthquake, estimated from satellite radar and GPS measurements[J]. Bulletin of the Seismological Society of America, 92(4):1377-1389.
Liang S, Gan W, Shen C, et al. 2013. Three-dimensional velocity field of present-day crustal motion of the Tibetan plateau derived from GPS measurements[J]. Journal of Geophysical Research:Solid Earth, 118(10):5722-5732.
Xu Z, Ji S, Cai Z, et al. 2012. Kinematics and dynamics of the Namche Barwa Syntaxis, eastern Himalaya:Constraints from deformation, fabrics and geochronology[J]. Gondwana Research, 21(1):19-36.
刘焰, Wolfgang S, 王猛. 2006. 东喜马拉雅构造结陆内变形过程的研究[J]. 地质学报, 80(9):1274-1284, 1487. LIU Yan, Wolfgang S, WANG Meng. 2006. Intracontinental deformed processes of the eastern Himalayan syntaxis[J]. Acta Geologica Sinica, 80(9):1274-1284, 1487(in Chinese).
唐方头, 宋键, 曹忠权, 等. 2010. 最新GPS数据揭示的东构造结周边主要断裂带的运动特征[J]. 地球物理学报, 53(9):2119-2128. TANG Fang-tou, SONG Jian, CAO Zhong-quan, et al. 2010. The movement characters of main faults around Eastern Himalayan Syntaxis revealed by the latest GPS data[J]. Chinese Journal of Geophysics, 53(9):2119-2128(in Chinese).
许志琴, 蔡志慧, 张泽明, 等. 2008. 喜马拉雅东构造结:南迦巴瓦构造及组构运动学[J]. 岩石学报, 24(7):1463-1476. XU Zhi-qin, CAI ZHi-hui, ZHANG Ze-ming, et al. 2008. Tectonics and fabric kinematics of the Namche Barwa terrane, Eastern Himalayan Syntaxis[J]. Acta Petrologica Sinica, 24(7):1463一1476(in Chinese).
张浪平, 邵志刚, 晏锐. 2011. 藏东南及周边地区地震活动特征研究[J]. 地震, 31(3):9-18. ZHANG Lang-ping, SHAO Zhi-gang, YAN Rui. 2011. Study on the characteristics of seismic activity in southeastern Tibet and surrounding areas[J]. Earthquake, 31(3):9-18(in Chinese).
钟大赉, 丁林. 1996. 青藏高原的隆起过程及其机制探讨[J]. 中国科学(D辑), 26(4):289-295. ZHONG Da-lai, DING Lin. 1996. The uplift process of Qinghai-Tibet plateau and its mechanism[J]. Science in China(Ser D), 26(4):289-295(in Chinese).
Gabriel A K, Goldstein R M, Zebker H A. 1989. Mapping small elevation changes over large areas:Differential radar interferometry[J]. Journal of Geophysical Research:Solid Earth, 94(B7):9183-9191.
Lin J, Stein R S. 2004. Stress triggering in thrust and subduction earthquakes and stress interaction between the southern San Andreas and nearby thrust and strike-slip faults[J]. Journal of Geophysical Research:Solid Earth, 109(B2):1-19.
Burg J P, Nievergelt P, Oberli F, et al. 1998. The Namche Barwa syntaxis:Evidence for exhumation related to compressional crustal folding[J]. Asian Journal of Earth Sciences, 16(2-3):239-252. doi:10.1016/S0743-9547(98)00002-6.
Gan W, Zhang P, Shen Z K, et al. 2007. Present-day crustal motion within the Tibetan plateau inferred from GPS measurements[J]. Journal of Geophysical Research:Solid Earth, 112(B8), B08416.
Geng Q R, Pan G T, Zheng L L, et al. 2006. The Eastern Himalayan Syntaxis:Major tectonic domains, ophiolitic mélanges and geologic evolution[J]. Journal of Asian Earth Sciences. 27(3):265-285.
Molnar P, England P. 1990. Late Cenozoic uplift of mountain ranges and global climate change:Chicken or egg?[J]. Nature, 346(6279):29-34.
Wang R, Diao Q F, Hoechner A. 2013. SDM-A geodetic inversion code incorporating with layered crust structure and curved fault geometry[C]. EGU General Assembly Conference.
Zhu L, Rivera L A. 2002. A note on the dynamic and static displacements from a point source in multilayered media[J]. Geophysical Journal International, 148(3):619-627.
Gupta T D, Riguzzi F, Dasgupta S, et al. 2015. Kinematics and strain rates of the Eastern Himalayan Syntaxis from new GPS campaigns in Northeast India[J]. Tectonophysics, 655:15-26.
Kikuchi M, Kanamori H. 1986. Inversion of complex body waves-Ⅱ[J]. Physics of the Earth & Planetary Interiors, 43(3):205-222.
Lin C H, Peng M, Tan H D, et al. 2017. Crustal structure beneath Namche Barwa, eastern Himalayan syntaxis:New insights from three-dimensional magnetotelluric imaging[J]. Journal of Geophysical Research:Solid Earth, 122(7):5082-5100.
Parsons B, Wright T, Rowe P, et al. 2006. The 1994 Sefidabeh(eastern Iran)earthquakes revisited:New evidence from satellite radar interferometry and carbonate dating about the growth of an active fold above a blind thrust fault[J]. Geophysical Journal International, 164(1):202-217.
Toda S, Stein R S, Richards-Dinger K, et al. 2005. Forecasting the evolution of seismicity in southern California:Animations built on earthquake stress transfer[J]. Journal of Geophysical Research:Solid Earth, 110(B5):1-17.
Wang Q, Zhang P Z, Freymueller J T, et al. 2001. Present-day crustal deformation in China constrained by global positioning system measurements[J]. Science, 294(5542):574-577.
Wells D L, Coppersmith K J. 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement[J]. Bulletin of the Seismological Society of America, 84(4):974-1002.
Wright T J. 1999. Source parameters of the 1 October 1995 Dinar(Turkey)earthquake from SAR interferometry and seismic body wave modelling[J]. Earth Planetary Science Letters, 172(1-2):23-37.
Yague-Martinez N, Prats-Iraola P, Gonzalez F R, et al. 2016. Interferometric processing of Sentinel -1 TOPS data[J]. IEEE Transactions on Geoscience Remote Sensing, 54(4):2220-2234.